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Abstract

The performance of two global optimization methods
(GOMs) with embedded elitism strategies for solving
the 2D acoustic seismic inverse problem is here
compared using synthetic acoustic data of the
Marmousi model. A real-coded elitist genetic algorithm
(GA) that had been used successfully in the past
for this end is compared with a newly developed
elitist-mutated particle swarm optimization (EMPSO)
technique to estimate acoustic macro models of the P-
wave velocity field (Vp). We find that EMPSO seems
to have higher performance than GA with respect to
the final attained value of the cost function when
the completion of specified number of iterations is
chosen as stopping criterion. The results further
show that while both EMPSO and the GA obtain high
quality solutions, the computational effort required by
PSO to arrive to such high quality solutions is less
than the effort required to arrive at the same high
quality solutions by the GA. Finally, multiple runs of
descent-based full waveform inversion (FWI) started
from either final GA or EMPSO models produce final
high-resolution models.

Introduction

Global optimization methods (GOMs) have presented
themselves as an alternative to estimate a starting model
for Full Waveform Inversion (FWI). GOMs are an interesting
choice since a proper parameterization technique coupled
with sufficient computing power allow for a reduction of the
geophysicist effort and time into building an initial estimate
of the velocity model. Simulated annealing (SA) and
genetic algorithm (GA) are the most commonly used GOMs
in geophysics, they (or a variant) have already been used
to estimate a starting model for FWI (Sajeva et al., 2016;
Datta and Sen, 2016). In recent years, however, particle
swarm optimization (PSO) algorithm has rapidly become
an attractive alternative for solving geophysical inverse
problems and seems to enjoy an ever increasing popularity
(Shaw and Srivastava, 2007; Fernandez-Martinez et al.,
2008). According to this trend, we propose to compare the
effectiveness of the elitism-based GA and PSO to solve
a 2D seismic optimization problem. The motivation is to
validate or refute the widely speculated hypothesis that

PSO has the same effectiveness as the GA (same rate of
success in finding true global optimal solutions) but with
better computational efficiency. The results of this test
could prove to be significant for the future development of
seismic inversion approaches using GOMs.

Theory

Real-coded GA with elitism: The GA begins its search
from a randomly generated population that evolve over
successive generations (iterations). To perform its
optimization-like process, the GA employs three operators
to propagate its population from one generation to another.
The first operator is the “Selection” operator that mimics the
principle of “Survival of the Fittest”. The second operator is
the “Crossover” operator, which mimics mating in biological
populations. The crossover operator propagates features
of good surviving models from the current population
into the future population, which will have better fitness
value on average. The last operator is “Mutation”, which
promotes diversity in population characteristics. The
mutation operator allows for global search of the design
space and prevents the algorithm from getting trapped in
local minima. Once selection, crossover and mutation are
complete, there will be two populations: the old and the
offspring. Reinsertion is concerned with the means of
combining them to produce the new population. Among
the various reinsertion approaches, the elitist strategy is
widely adopted. In such strategy, the best parents are
reinserted in the next population. The encoding schemes
in GA are either binary coding or real coding. The latter
overcomes several issues regarding the former and it
has also been adopted to address problems in a wide
range of areas. Therefore, we used a real-coded elitist
GA similar to that used by Sajeva et al. (2017). This
version of GA is based on stochastic universal sampling
type selection, intermediate recombination crossover, and
mutation according to a defined probability Pm (A selected
variable of an individual is mutated with probability Pn) on a
population of fixed number individuals.

Elitist-mutated PSO: PSO is an evolutionary computation
technique based on the social behavior metaphor. The
PSO algorithm is initialized with a population of random
candidate solutions, conceptualized as particles. Each
particle xi = xi1,xi2, . . . ,xiD is assigned a randomized
velocity vi = vi1,vi2, . . . ,viD and is iteratively moved through
the D-dimensional problem space. It is attracted towards
the location of the best fitness achieved so far by the
particle itself pi = pi1, pi2, . . . , piD and by the location of the
best fitness achieved so far across the whole population
gi = g1,g2, . . . ,gD (gbest-global version of the algorithm). At
iteration k, the basic PSO algorithm (Clerc, 1999) can be
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described in vector notation as follows:
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In Eq. 1, χ, c1, and c2 are the control parameters called
the constriction factor, cognitive parameter, and social
parameter, respectively. The former is a function of c1 and
c2 as reflected in Eq. 3.

χ =
2

| 2−ϕ−
√

ϕ2−4ϕ |
, where ϕ = c1 + c2 ≥ 4.

(3)
On the other hand, vectors u1 and u2 are D-dimensional
vectors of uniformly distributed and independent random
numbers in the [0,1] range used to maintain the
population diversity (⊗ denotes element-by-element vector
multiplication). We used an improved PSO, named
EMPSO (Nagesh Kumar and Janga Reddy, 2007), which
introduces an elitist-mutation strategy into the PSO to
improve its performance. Pseudocode of the EMPSO
algorithm is presented in Fig. 1. In the EMPSO, the
elitist-mutation step is computed as follows: first, all
particles are sorted in ascending order based on their
fitness function and the index numbers for the respective
particles are obtained; second, the elitist-mutation (EM)
is performed on NM worst particles and the respective
particle position vectors are replaced with the new mutated
position vectors, whereas the velocity vectors of these
particles are unvaried.

1: for i← 1 to NM do
2: l← ASF [i]
3: for d← 1 to D do
4: if rand < pem then
5: xld = gd +0.1×V Rd × randn
6: else
7: xld = gd
8: end if
9: end for

10: end for

Figure 1 Pseudo-code of the EMPSO algorithm.
NM=number of particles to be elitist-mutated;
pem=probability of mutation; gd = d-th component of
global best particle; ASF=index of sorted population;
rand=uniformly distributed random number U(0,1);
randn=Gaussian random number N(0,1); and V Rd=range
of decision variable d.

Testing approach (GA/EMPSO + local FWI)

In this section, we show the results obtained when the
complete workflow (global + local search methods) was
applied for retrieving a cropped Marmousi model (285×369
samples, with vertical and horizontal space sampling of 8
m and 25 m, respectively). For the forward modeling of the
GA and EMPSO algorithms, we use the finite-differences
(FD) method, with an accuracy of 2nd order in time and 8th
order in space. The acquisition geometry consisted of 50
sources and 369 receivers, one receiver for each sample
on the horizontal axis. We generated synthetic data using
a Ricker wavelet with a maximum frequency around 17 Hz,
and set the sampling and recording times to 0.8 ms and 3
s, respectively. This dataset was then filtered (below 6 Hz),

and a Ricker wavelet with a maximum frequency around 6
Hz was used to compute the modeled data. To evaluate the
misfit, we use the l2 norm. Proceeding as in Sajeva et al.
(2017), we use a simple 1D Vp model (which together with
the water bottom depth constitute the prior information) with
velocities linearly increasing with depth from 1500 to 3500
m/s. This model is used to centre the GA/EMPSO inversion
ranges and also to build the irregular GA/EMPSO grid by
following predefined resolution criteria (for full details, see
Sajeva et al. (2017)). The resulting grid (black dots) and the
linear 1D model are shown in Figure 2-a. This grid has 176
nodes. These nodes are bilinearly interpolated to the finite-
difference grid for the forward-modeling following what has
come to be called a “two grid strategy”. The ranges for the
Vp values during the GA/EMPSO inversion are shown in
Figure 2-b. We defined the minimum and maximum limits
for the first and last level of depth as a percentage of the
velocity value of the grid nodes at these levels. The limits
for the intermediate levels of depth are defined by the lines
passing through the maximum and minimum points of the
shallower and deeper levels.

The GA parameters are set as follow: 360 individuals
that evolve for 100 generations, mutation rates Pm = 0.7
and Pn = 0.5. As many offspring as parents are produced
and 25% of the better-fitting parents are saved to enable
the replacement of the least fit offspring in the new
generations by the most fit parents. It is checked that
the offspring are replaced by better parents. For the
EMPSO we used 360 particles, 100 iterations, NM=25%,
Pem=0.3 and the gbest topology. In EMPSO, the EM
step begins from 10th iteration (10% of the maximum
number of iterations) and the coefficients of cognitive
(c1) and social(c2) acceleration were set to 1,2 and 2,9,
respectively. In both GOMs, if the model variables violate
their upper or lower bounds, they are artificially brought
back into the search space. In the PSO/GA inversions,
we performed 36.000 model evaluations and the final
best-fitting model is used as a starting point in a local
full-waveform inversion. Our implemented descent-based
FWI algorithm uses the steepest-descent method and a
multiscale approach (performing thirty iterations for each
frequency band with maximum frequencies of 4.6, 11.5,
18.4, 25.3, 32.2 and 39 Hz). The line search along the
gradient search directions uses the Barzilai-Borwein (BB)
formula for an initial step length (Barzilai and Borwein,
1988). When required, it applies a backtracking line search
method to update the step length. The forward problem in
FWI is formulated in the time domain and solved using an
FD method having an accuracy of 2nd order in time and
16th order in space, with a time step of 0.8 ms to ensure
stability. The recording time and sampling grid (dx and dy )
were equal to those used by EMPSO/GA.

Parallel implementation

Knowing in advance that the GOM’s require the
evaluation of many thousands of models, we implemented
parallel versions that rely on running in parallel the
evaluation of the fitness function of each particle/individual.
The algorithms were implemented using an hybrid
(MPI/OpenMP) master/worker programming paradigm
where particles/individuals fitness evaluation is handled
through dynamic scheduling. The experiments were run on
the YEMOJA Supercomputer at SENAI CIMATEC, which
uses an InfiniBand interconnection. Each compute node
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Figure 2 (a) 1D gradient model and the irregular grid nodes. (b) The search range used in the inversions.

used contains 128 GB of RAM and two sockets where
each socket has an Intel Xeon E5-2690 v2 CPU at 3 GHz
(https://www.top500.org/system/178420). Of the various
possible scenarios for the distribution of processes and
threads in each node of YEMOJA, the 10 MPI tasks
× 2 OpenMP threads per node configuration gave the
best performance in the testing approach described above
(36.000 model evaluations). The overall run time of
inversions was approximately 20 hours, using 18 nodes
(180 MPI processes). Note that the runtime could have
been even lower if a higher number of compute nodes
had been used and if more code optimizations had been
carried out. To put it more clearly, the time that inversion
takes will depend on the complexity of the forward model,
the parallelization strategy and the hardware. Yet, thanks
to advances in high-performance computing, time is not
viewed as a constraint today - at least in the simplest case
(2D acoustic approximation).

Results

Figures 3 and 4 ilustrate both GA and EMPSO results for
three random trials (both techniques used the same seed
for random number generation at each experiment). The
error vs iteration plots are shown in Figure 5. For both
methods, the error gradually decreases along the time. It
should be noted, however, that EMPSO gives best fitness
values over different trials than GA. EMPSO does not seem
to experience long periods of stagnation as GA (apparent
from the staircase pattern in fitness curves). Figures 6
and 7 show the final models after descent-based FWI
using as starting models the velocity estimates retrieved
by GA and EMPSO, respectively. The correct Marmousi
model is shown repeatedly in Figs. 3-a, 4-a, 6-a and 7-
a for ease of comparison. In general, the starting velocity
models obtained using GA seem to be smoother than those
generated by EMPSO. However, the FWI results using
either GA and EMPSO outputs are virtually equivalent.
Putting it another way, the EMPSO and GA methods allow
the recovery of the low wavenumber components in the
background model to avoid the cycle-skipping problem and
their results are comparable. As the chosen stopping
criterion was the number of iterations/generations neither
of the methods stands out over another in computational
time. However, it was noted that the final attained value
of the fitness in GA trials (≈ 2× 106) is reached in fewer
iterations in EMPSO trials. This clearly shows that EMPSO
could save computational time using another stopping
criterion (i.e., the achievement of a predetermined data
misfit value)
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Figure 3 (a) Cropped Marmousi model. (b-d) The inversion
estimates obtained with real-coded GA with elitism for three
random trials.
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Figure 4 (a) Cropped Marmousi model. (b-d) The inversion
estimates obtained with EMPSO for three random trials.

Conclusions

In this paper, we compare the performances of two of the
most used GOMs in applied geophysics (GA and PSO)
with implemented elitism strategies for estimating acoustic
macro models of the Vp field using synthetic acoustic data
of the Marmousi model. For the implemented versions,
EMPSO yields Vp models that provide lower data misfits
than those supplied by GA’s outputs, although both sets
of models reproduce the long-wavelength structures of
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Figure 5 (a-c) The evolution of the energy function for EMPSO (red) and GA (blue) for the three diferent random trials in
sequence (b-d) from Figs. 3 and 4, respectively.
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Figure 6 (a) Cropped Marmousi model. (b-d) Final models
after descent-based FWI from the starting models (b-d)
after GA of Figure 3.
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Figure 7 (a) Cropped Marmousi model.(b-d) Final models
after descent-based FWI from the starting models (b-d)
after EMPSO of Figure 4.

the Marmousi. Descent-based FWIs results using final
GA and EMPSO models are close to the true Marmousi
model, demonstrating the ability of both GOMs to yield
velocity models suitable as input to descent-based FWI.
From our experience, it is observed that EMPSO has faster
convergence rate and the best robustness than GA with
elitism. EMPSO requires fewer iterations than GA to find

the same fitness value, which would have resulted in less
CPU time with the proper stopping criterion (supporting
the tested hypothesis). However, note that comparisons
of GOMs are problem dependent and restricted to the
implemented versions.
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